
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
Efficient algorithm for detecting unstable periodic orbits in chaotic systems
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We present an efficient method for fast, complete, and accurate detection of unstable periodic orbits in
chaotic systems. Our method consists of an iterative scheme and an effective technique for selecting initial
points. The iterative scheme is based on the semi-implicit Euler method, which has both fast and global
convergence, and only a small number of initial points is sufficient to detect all unstable periodic orbits of a
given period. The power of our method is illustrated by numerical examples of both two- and four-dimensional
maps.@S1063-651X~99!06711-2#
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It has now been a widely accepted notion that unsta
periodic orbits ~UPO’s! constitute the most fundament
building blocks of a chaotic system@1#. Theoretically, the
infinite number of UPO’s embedded in a chaotic invariant
provides a skeleton of the set, and many dynamical inv
ants of physical interest, such as the natural measure
spectra of Lyapunov exponents, and fractal dimensions
well as other statistical averages of physical measureme
can be computed from the infinite set of UPO’s in a fund
mental way@2#. In Hamiltonian systems, the quantum m
chanical density of states in the semiclassical regime ca
expressed explicitly in terms of UPO’s of the correspond
classical dynamics@3#. The knowledge of UPO’s is also o
significant experimental interest because they provide a
to characterize and understand the chaotic dynamics of
underlying system@4#. All these call for efficient technique
for detecting UPO’s in chaotic systems.

Systematic detection of a complete set of UPO’s of h
periods embedded in a chaotic set even in situations w
the system’s equations are known is, however, an extrem
difficult problem. A fundamental reason is that the numb
of UPO’s grows exponentially as the period increases a
rate given by the topological entropy of the chaotic set. T
basic requirements for a good detection algorithm are, th
fore, fast convergence and the ability to yield complete se
UPO’s @5#.

Recently, a general algorithm for detecting UPO’s in ch
otic systems was proposed by Schmelcher and Diako
~SD! @6# who, for the first time, computed UPO’s of hig
periods for systems such as the Ikeda-Hammel-Jo
Moloney map@7#. The success of the SD method relies on
globally convergent iterative scheme: convergence to UP
can be achieved, in principle, from any initial point. How
ever, as we will discuss shortly, this method is not very
ficient from the standpoint of convergence; neither doe
provide a satisfactory test for the completeness of the
tected UPO’s. As a matter of fact, for the Ikeda-Hamm
Jones-Moloney map, only UPO’s of periods up to 13 we
reported in Ref.@6#, and one of the UPO’s of period 10 wa
not detected.

The aim of this Brief Report is to present anefficient
method for detecting UPO’s in general chaotic systems.
iterative scheme is based on the semi-implicit Euler met
PRE 601063-651X/99/60~5!/6172~4!/$15.00
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@8#, and has the following favorable properties: near an o
point it exhibits a fast convergence similar to that of t
traditional Newton-Raphson~NR! method, while away from
the orbit points it is similar to the SD method and, therefo
is globally convergent. Another key ingredient of our meth
is that we select initial points based on the observation
using orbit points of UPO’s of other periods to initialize th
search for UPO’s of a given period ismuch more effective
than using randomly selected points in the phase space
the attractor. We find, in most cases, it is sufficient to u
only orbit points of periodp21 in order to detect all UPO’s
of period p. With such a strategy, we are able to compu
UPO’s for, say, the Ikeda-Hammel-Jones-Moloney map,
periods up to 22 for a total of over 106 orbit points using
roughly the same amount of computation required by the
method to compute all UPO’s of periods up to 13 that ha
less than 6000 orbit points@9#. Due to its efficiency, our
method allows us to compute UPO’s in higher-dimensio
systems, which we illustrate using a four-dimensional c
otic map.

We begin by describing the NR and SD methods. Co
sider anN-dimensional chaotic map:xn115f(xn). The orbit
points of periodp can be detected aszerosof the function

g~x!5f (p)~x!2x, ~1!

where f (p)(x) is the p-times iterated map off(x). The pro-
cess of finding zeros ofg(x) usually begins with the choice
of initial point x0 followed by the computation of successiv
corrections:xnew5xold1dx, which converge to the desire
solution. In the NR method, the corrections are calcula
from a set ofN linear equations,

2J~x!dx5g~x!, ~2!

whereJ(x)5]g/]x is the Jacobian matrix. The NR metho
has excellent convergence properties, approximately d
bling the number of significant digits upon every iteratio
provided that the initial point is within the linear neighbo
hood of the solution. While it is relatively easy to find su
able initial points for very small periods~using, for example,
a uniform grid, iterations of the map, or a random numb
generator!, the method becomes impractical for UPO’s
high periods because the volume of the basin from whichx0
6172 © 1999 The American Physical Society
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can be chosen decreases exponentially as the period
creases. On the other hand, in the SD method, the correc
are determined as follows:

dx5lCg~x!, ~3!

wherel is a small positive number andC is anN3N matrix
with elementsCi j P$0,61% such that each row or colum
contains only one element that is different from zero. W
an appropriate choice ofC and a sufficiently small value o
l, the above procedure can find any periodic point of a c
otic system. The main advantage of the SD method is
the basin of attraction of each UPO extends far beyond
linear neighborhood, so most initial points converge to
UPO. In fact, the basins of attraction of individual orb
points completely fill a region in the phase space, and
initial point in this region converges to an orbit point.

Schmelcher and Diakonos tested their method by com
ing the UPO’s for the He´non map and other simple maps, f
which the UPO’s are known from methods specific to the
maps @5#. They also applied the method to the Iked
Hammel-Jones-Moloney map, for which no special te
nique for computing UPO’s was previously available. T
method appears to be particularly useful when detecting
each period the least unstable periodic orbits@10#. However,
if the goal is to determine complete sets of UPO’s of incre
ingly higher periods, the SD method becomes inefficient d
to the following two reasons:~i! the convergence rate of Eq
~3! is much slower than that of the NR method, so it tak
significantly more steps to reach the desired accuracy@11#;
and ~ii ! even though the SD scheme is globally converge
the basins of attraction of individual UPO’s are interwov
in a complicated manner, so it is extremely difficult to det
mine which initial point converges to a particular UPO. B
cause of this difficulty, the SD method cannot guarantee
detection of all UPO’s of a given period.

To overcome the problem of slow convergence, while
taining the global convergence property, we propose the
lowing iteration scheme:

@1bg~x!2CJ~x!#dx5Cg~x!, ~4!

whereg(x)[ig(x)i>0 is the length of the vector,b.0 is
an adjustable parameter, andC is the same matrix as in Eq
~3!. In the vicinity of an UPO, the functiong(x) tends to
zero and the NR method is restored. In fact, it is straightf
ward to verify that the above scheme retains the quadr
convergence. On the other hand, away from the solution
for sufficiently large values ofb, our scheme is similar to
Eq. ~3!, and thus almost completely preseves the global c
vergence property of the SD method. This similarity is eas
understood, since Eq.~3! is the Euler method with step siz
l for solving the following system of ordinary differentia
equations~ODE!’s:

dx

ds
5Cg~x!. ~5!

On the other hand, Eq.~4! is thesemi-implicitEuler method
@9# with step sizeh51/bg(x) for solving the same system o
ODE’s. Consequently, with sufficiently small step size, bo
methods closely follow the solutions to Eq.~5! and thus
share the global convergence property.
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To illustrate and contrast the convergence properties
the NR, the SD, and our methods, we consider the follow
simple example: finding zeros of the functiong(x)
5cos(x2) in the interval (23,3). The basins of convergenc
for each method are shown in Fig. 1 with thick arrows. T
NR method converges to all six zeros, and the basins
essentially within the linear neighborhood of each point@12#.
The SD method converges to the solutiong(x0)50 if 0
,l,2/g8(x0) andC52sgn„g8(x0)…. Diagram~b! in Fig. 1
shows the basin of convergence for 0,l,0.3568 andC
51. Obvious is the global character of convergence to ze
with negative function derivatives, while zeros with positiv
derivatives serve as basin boundaries. WithC521 the con-
vergence directions are reversed. The result of applying
iteration scheme withb54.0 andC51 to the same function
is shown in the diagram~c!. We see that, as in the NR
method, all zeros have basins of convergence. However
basins of zeros with negative function derivatives cover m
of the interval, while the basins of other zeros, as well as
intervals between basins, are reduced and become sm
with increasing value ofb. Therefore, our scheme combine
the efficiency of the NR method with the global character
the SD algorithm.

Another important ingredient of our method lies in th
selection of initial points: we find that the most efficie
strategy for detecting UPO’s of periodp is to use UPO’s of
other periods as initial points. This is understandable, si
orbit points cover the attractor in a systematic manner, wh
reflects the foliation of the functionf (p)(x) and its iterates. In
cases of the He´non and the Ikeda-Hammel-Jones-Molon
maps, we are able to detect all UPO’s of periodp using only
orbit points of periodp21, provided that periodp21 orbits
exist. In more complicated cases of higher-dimensio
maps, this simple strategy leaves a small fraction of UP
undetected@13#. However, in all cases, we are able to fin
these UPO’s using periodp11 points~first we use incom-
plete set of periodp orbits to find periodp11 points, and

FIG. 1. Shown with thick lines are the basins of convergence
~a! the Newton-Raphson~NR! method, ~b! the Schmelcher-
Diakonos~SD! method with 0,l,0.3568 andC51, and~c! our
method withb54.0 andC51 to the zeros of a function cos(x2) in
the interval (23,3). Arrows indicate the direction of convergenc
and large dots are the zeros to which the methods converge.
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6174 PRE 60BRIEF REPORTS
then use them to complete the detection of periodp orbits!.
The main advantage of using orbit points of neighbor
periods as initial points is that once we establish the strat
for smaller periods, it works in a similar manner for th
detection of UPO’s of large period. This allows us to cla
with confidence that we detect all UPO’s of increasing
longer periods for general multidimensional chaotic map

We now apply our method to detecting UPO’s for t
following Ikeda-Hammel-Jones-Moloney map@7#:

x85a1b~x cosf2y sinf!,
~6!

y85b~x sinf1y cosf!,

wheref5k2h/(11x21y2), and the parameters are chos
such that the map has a chaotic attractor:a51.0,b50.9,k
50.4, andh56.0. Detection of UPO’s proceeds as follow
UPO’s of periods 1 and 2 are quickly found using seve
initial points on the attractor. Starting fromp53 we use only
orbit points of periodp21 as initial points. We chooseC
from the set of five matrices$Ckuk51, . . . ,5% provided in
Ref. @6#, whereC151 is the identity matrix. The iteration
sequence computed from Eq.~4! is terminated when it eithe
converges to an orbit point or leaves the chaotic attrac
The average number of iterations increases linearly withb,
which is understandable sinceidxi'1/b for large b and
away from an orbit point. However, a small fraction of initi
points produces very long sequences which neither conv
to an UPO nor leave the attractor. In order to limit t
amount of unproductive computation, we set the maxim
number of iterations to 4–6 timesb, which is sufficient for
the majority of iterates to be terminated properly. The q
dratic convergence of our scheme allows us to achieve, w
out much computational effort, accuracy limited only by t
computer roundoff error. Once the sequence converges t
orbit point, we check whether it belongs to a yet undetec
UPO, and if so, we compute the rest of the orbit points

FIG. 2. Number of detected orbits for different periods in t
Ikeda-Hammel-Jones-Moloney attractor given in Eq.~6!. Solid dots
indicate the values ofb above which we always detect a maximu
number of UPO’s for each period.
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iterating the map and refining the solutions with a couple
NR steps@we simply setb50 in Eq. ~4!#.

Figure 2 shows the number of detected UPO’s of perio
10–18 using different values ofb in the range from 10 to
3000. Note that for every period there exists a valueb
5bmin(p) above which we are guaranteed to find a maxim
number of UPO’s. This feature of our scheme strongly s
gests that the detected orbits constitute acompleteset of
UPO’s for each period. Sincebmin(p) is approximately pro-
portional to eap, wherea is a positive constant, we can e
timate the value ofb necessary to find all UPO’s of increas
ingly longer periods. The numbers of the UPO’s for perio
up to 13 agree with those of Schmelcher and Diakonos@6#
except for period 10, where we have detected one additio
orbit. The number of orbits of periods 14 through 22, whi
were not reported previously, are given in Table I.

If we monitor the number of orbits detected with differe
matricesC, we note that, for a wide range of values ofb,
after we use identity matrixC1, only a few UPO’s remain
undetected. For example, withb55000 andC5C1 in Eq.

FIG. 3. Detection of UPO’s of period 13 in the Ikeda-Hamme
Jones-Moloney attractor. The number of orbits detected withC1 is
shown with solid dots, while triangles represent the number of
ditional orbits detected withCk , k52, . . . ,5. Thetotal number of
detected orbits is shown with open circles.

TABLE I. Number of distinct UPO’s,n(p), and the total num-
ber of orbit points of periodp, N(p), for the Ikeda attractor given
by Eq.~6!. Note thatN(p) also includes orbit points whose period
are factors ofp.

p n(p) N(p)

14 317 4 511
15 566 8 517
16 950 15 327
17 1 646 27 983
18 2 799 50 667
19 4 884 92 797
20 8 404 168 575
21 14 700 308 777
22 25 550 562 939
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PRE 60 6175BRIEF REPORTS
~4!, our method detects 14 699 orbits of period 21, and o
one new orbit is detected withC5C2. To understand this
feature of our method, which is common to all the ma
tested, in Fig. 3 we show, for the chaotic attractor in Eq.~6!,
the number of period 13 orbits detected withC1 ~solid dots!
and the number of additional orbits detected withCk , k
52, . . . ,5~triangles!. For 100,b,1000, almost all UPO’s
are detected, withC being the identity matrix. At larger val
ues ofb the number of thus detected orbits decreases, bu
remaining orbits are always detected with other matrices.
b.105 the numbers converge to those of the SD iterat
scheme, where about half of the orbits are detected withC1
and the other half withC2 and C3. This behavior of our
scheme follows directly from the convergence considerati
of Fig. 1, and results in a greatly improved efficiency co
pared to either the NR or SD methods.

Finally, we briefly describe the performance of o
method for other maps. In case of the He´non map our algo-
rithm works extremely well, and, for the standard parame
values of (a,b)5(1.4,0.3), detects all UPO’s up to period 2
with b,500, C5C1 and C2, and using for initialization
only orbit points of periodp21. We have also applied ou
algorithm to detecting UPO’s in the following four
e,
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dimensional map: two coupled Ikeda maps with coupling
the form f (1,2)5k2h/(11x(1,2)

2 1y(1,2)
2 )12p«(x(2,1)

2x(1,2)), whose parameters are chosen such that the sys
has two positive Lyapunov exponents. We estimate the to
logical entropy in this system to behT'1.6, and thus the
number of orbits grows extremely fast with increasing or
length. We have detected complete sets of UPO’s up to
riod 7 with b,1000. We have found that the reliability o
the algorithm was not affected by the increased dimens
ality of the system. Even though the number of possible m
tricesC in four dimensions is 384, only a dozen of these a
needed to detect all UPO’s. The necessary set of matriceC
can be selected empirically when detecting short UPO’s,
then used in the detection of longer orbits.

In conclusion, we have proposed an efficient algorith
for the detection of UPO’s in chaotic systems, and have s
cessfully detected large number of UPO’s in several tw
and higher-dimensional maps. Our method allows for a v
fication of the completeness of the detected orbits and h
accuracy limited only by the roundoff error.

This work was supported by the AFOSR under Grant N
F49620-98-1-0400 and by the NSF under Grant No. PH
9722156.
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