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Efficient algorithm for detecting unstable periodic orbits in chaotic systems

Ruslan L. Davidchackand Ying-Cheng Ldi?
IDepartment of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
2Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
(Received 8 March 1999; revised manuscript received 2 June) 1999

We present an efficient method for fast, complete, and accurate detection of unstable periodic orbits in
chaotic systems. Our method consists of an iterative scheme and an effective technique for selecting initial
points. The iterative scheme is based on the semi-implicit Euler method, which has both fast and global
convergence, and only a small number of initial points is sufficient to detect all unstable periodic orbits of a
given period. The power of our method is illustrated by numerical examples of both two- and four-dimensional
maps.[S1063-651X99)06711-3

PACS numbd(s): 05.45-a

It has now been a widely accepted notion that unstabl¢8], and has the following favorable properties: near an orbit
periodic orbits (UPQ’s) constitute the most fundamental point it exhibits a fast convergence similar to that of the
building blocks of a chaotic systefii]. Theoretically, the traditional Newton-RaphsofNR) method, while away from
infinite number of UPO’s embedded in a chaotic invariant sethe orbit points it is similar to the SD method and, therefore,
provides a skeleton of the set, and many dynamical invariiS globally convergent. Another key ingredient of our method
ants of physica| interest, such as the natural measure, tHé that we select initial pOintS based on the observation that
Spectra of Lyapunov exponentS, and fractal dimensionS, d.és|ng orbit pOintS of UPQO'’s of other periOdS to initialize the
well as other statistical averages of physical measurementgearch for UPO’s of a given period fauch more effective
can be computed from the infinite set of UPO’s in a funda-than using randomly selected points in the phase space or in
mental way[2]. In Hamiltonian systems, the quantum me- the attractor. We find, in most cases, it is sufficient to use
chanical density of states in the semiclassical regime can bnly orbit points of periogp—1 in order to detect all UPO’s
expressed explicitly in terms of UPO’s of the corresponding®f period p. With such a strategy, we are able to compute
classical dynamic§3]. The knowledge of UPO's is also of UPO's for, say, the Ikeda-Hammel-Jones-Moloney map, of
significant experimental interest because they provide a waperiods up to 22 for a total of over ®rbit points using
to characterize and understand the chaotic dynamics of tH@ughly the same amount of computation required by the SD
underlying systenii4]. All these call for efficient techniques Method to compute all UPO’s of periods up to 13 that have
for detecting UPO's in chaotic systems. less than 6000 orbit pointd]. Due to its efficiency, our

Systema’[ic detection of a Comp]ete set of UPQ'’s of h|ghmeth0d allows us to compute UPO’s in higher-dimensional
periods embedded in a chaotic set even in situations wher@/stems, which we illustrate using a four-dimensional cha-
the system’s equations are known is, however, an extreme®tic map.
difficult problem. A fundamental reason is that the number We begin by describing the NR and SD methods. Con-
of UPO’s grows exponentially as the period increases at &ider anN-dimensional chaotic map,.;=f(x,). The orbit
rate given by the topological entropy of the chaotic set. The?0ints of periodp can be detected aerosof the function
basic requirements for a good detection algorithm are, there-

f i : 9(x)=fP)(x) - x, (1)
ore, fast convergence and the ability to yield complete set of

UPO's[5]. wheref (P)(x) is the p-times iterated map of{(x). The pro-

Recently, a general algorithm for detecting UPQO’s in Cha’cess of finding zeros aj(x) usually begins with the choice

otic systems was proposed by Schmelcher and Diakonos: : ... | DO foll h - f .
(SD) [6] who, for the first time, computed UPO's of high Gf initial point x, followed by the computation of successive

. corrections:Xpew= Xoig+ 6X, Which converge to the desired
periods for systems such as the lkeda-Hammel-Jone new: +old g

Moloney map[7]. Tht_a success of the SD method relies on %(;Irl:]tlgns.eltno::lemi\l ezrmeghha?t?c;ntsh,e corrections are calculated
globally convergent iterative scheme: convergence to UPQO’s
can be achieved, in principle, from any initial point. How- —J(x) x=g(X), 2)
ever, as we will discuss shortly, this method is not very ef-
ficient from the standpoint of convergence; neither does itvhereJ(x)=dg/dx is the Jacobian matrix. The NR method
provide a satisfactory test for the completeness of the dehas excellent convergence properties, approximately dou-
tected UPO’s. As a matter of fact, for the lkeda-Hammel-bling the number of significant digits upon every iteration,
Jones-Moloney map, only UPQO'’s of periods up to 13 wereprovided that the initial point is within the linear neighbor-
reported in Ref[6], and one of the UPO'’s of period 10 was hood of the solution. While it is relatively easy to find suit-
not detected. able initial points for very small periodsising, for example,
The aim of this Brief Report is to present afficient —a uniform grid, iterations of the map, or a random number
method for detecting UPQ's in general chaotic systems. Ougeneratoy, the method becomes impractical for UPO’s of
iterative scheme is based on the semi-implicit Euler methodhigh periods because the volume of the basin from which
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can be chosen decreases exponentially as the period in [ ‘ ' i ‘ ‘
creases. On the other hand, in the SD method, the correction:
are determined as follows:

ox=ACg(x), )

where\ is a small positive number ar@is anN XN matrix 0
with elementsC;; {0, 1} such that each row or column
contains only one element that is different from zero. With
an appropriate choice & and a sufficiently small value of

\, the above procedure can find any periodic point of a cha-
otic system. The main advantage of the SD method is that-1} -
the basin of attraction of each UPO extends far beyond its

linear neighborhood, so most initial points converge to a ————t @ ——e

UPO. In fact, the basins of attraction of individual orbit (b)

points completely fill a region in the phase space, and any [~

initial point in this region converges to an orbit point. ro o © o+

Schmelcher and Diakonos tested their method by comput-
ing the UPQ's for the Heon map and other simple maps, for
which the UPO’s are known from methods specific to theseia) the Newton-Raphson(NR) method, (b) the Schmelcher-

maps [5]. They also applied the method to the lkeda- Diakonos(SD) method with 6<\ <0.3568 andC=1, and(c) our

Hammel-Jones-Moloney map, for which no special tech'method withB=4.0 andC=1 to the zeros of a function co&j in

nique for computing UPO,,S was previously ava'lable; Thethe interval 3,3). Arrows indicate the direction of convergence,
method appears to be particularly useful when detecting fogq |arge dots are the zeros to which the methods converge.
each period the least unstable periodic orplid]. However,
if the goal is to determine complete sets of UPO’s of increas- To illustrate and contrast the convergence properties of
ingly higher periods, the SD method becomes inefficient duéhe NR, the SD, and our methods, we consider the following
to the following two reasongi) the convergence rate of Eq. simple example: finding zeros of the functiog(x)
(3) is much slower than that of the NR method, so it takes=cos¢?) in the interval (- 3,3). The basins of convergence
significantly more steps to reach the desired accufady,  for each method are shown in Fig. 1 with thick arrows. The
and (ii) even though the SD scheme is globally convergentNR method converges to all six zeros, and the basins are
the basins of attraction of individual UPO’s are interwovenessentially within the linear neighborhood of each ppird.
in a complicated manner, so it is extremely difficult to deter-The SD method converges to the solutig{ix,)=0 if O
mine which initial point converges to a particular UPO. Be- <\ <2/g’(xo) andC= —sgn(g’(x)). Diagram(b) in Fig. 1
cause of this difficulty, the SD method cannot guarantee thehows the basin of convergence fox@<0.3568 andC
detection of all UPO’s of a given period. =1. Obvious is the global character of convergence to zeros
To overcome the problem of slow convergence, while re-with negative function derivatives, while zeros with positive
taining the global convergence property, we propose the folderivatives serve as basin boundaries. With — 1 the con-

FIG. 1. Shown with thick lines are the basins of convergence of

lowing iteration scheme: vergence directions are reversed. The result of applying our
iteration scheme witl8=4.0 andC=1 to the same function
[189(x) — CI(x)]ox=Cg(x), (4 is shown in the diagranic). We see that, as in the NR

method, all zeros have basins of convergence. However, the
an adjustable parameter, afidis the same matrix as in Eq. basms_ of zeros W|_th negatlve_: function derivatives cover most
of the interval, while the basins of other zeros, as well as the

(3). In the vicinity of an UPO, the functiog(x) tends to . i Is bet basi duced and b I
zero and the NR method is restored. In fact, it is straightfor—m_er\_’as etween basins, are reduced and become smaller
ith increasing value of3. Therefore, our scheme combines

ward to verify that the above scheme retains the quadrati o .
convergence. On the other hand, away from the solution anéée eff|C|e|ncy ﬁf the NR method with the global character of
’ the SD algorithm.

for sufficiently large values of3, our scheme is similar to : . . L
y 1arg B Another important ingredient of our method lies in the

Eq. (3), and thus almost completely preseves the global con- ; b . . -
vergence property of the SD method. This similarity is easilyst(aletc'['onf Ofdm'lt'ai. pO'St;'O,We ffmd .tha}t :he moLsJ}D(e)f’flmefnt
understood, since E@3) is the Euler method with step size strategy for detecting S of perigalis to use S0

X for solving the following system of ordinary differential other periods as initial points. This is understandable, since

whereg(x)=|/g(x)||=0 is the length of the vecto3>0 is

; e orbit points cover the attractor in a systematic manner, which
equationgODE)’s: o . o
g X ) reflects the foliation of the functioi?(x) and its iterates. In
dx cases of the Hwn and the Ikeda-Hammel-Jones-Moloney
gs~ C9). (5)  maps, we are able to detect all UPO’s of perpodsing only

orbit points of periodo—1, provided that periogp— 1 orbits
On the other hand, Edq4) is the semi-implicitEuler method exist. In more complicated cases of higher-dimensional
[9] with step sizeh=1/8g(x) for solving the same system of maps, this simple strategy leaves a small fraction of UPO’s
ODE'’s. Consequently, with sufficiently small step size, bothundetected 13]. However, in all cases, we are able to find
methods closely follow the solutions to E¢p) and thus these UPO’s using periog+1 points(first we use incom-
share the global convergence property. plete set of periog orbits to find periodp+1 points, and
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TABLE I. Number of distinct UPO’sn(p), and the total num-

' I ' p ber of orbit points of periog, N(p), for the lkeda attractor given
18 by Eq.(6). Note thatN(p) also includes orbit points whose periods
are factors ob.
gms_ ol P n(p) N(p)
g 14 317 4511
g 19 15 566 8517
s 14 16 950 15327
5 17 1646 27983
2 18 18 2799 50667
Z .l 12 | 19 4884 92797
11 20 8404 168575
21 14700 308777
10 22 25550 562 939
10' 10° 10°
B

iterating the map and refining the solutions with a couple of
NR stepgwe simply set3=0 in Eq. (4)].

Figure 2 shows the number of detected UPO’s of periods
10-18 using different values @8 in the range from 10 to
3000. Note that for every period there exists a vaie
= Bmin(P) @above which we are guaranteed to find a maximum
then use them to complete the detection of pepantbity. ~ Number of UPO’s. This feature of our scheme strongly sug-
The main advantage of using orbit points of neighboringd®Sts that the detected orbits constitutecmnpleteset of

periods as initial points is that once we establish the strategy/ PO’S for each period. SincBin(p) is approximately pro-
for smaller periods, it works in a similar manner for the Portional to €°, wherea is a positive constant, we can es-
detection of UPO's of large period. This allows us to claim timate the value o necessary to find all UPO's of increas-
with confidence that we detect all UPO'’s of increasinglyingly longer periods. The numbers of the UPO's for periods
longer periods for general multidimensional chaotic maps. UP to 13 agree with those of Schmelcher and Diakdifds
We now apply our method to detecting UPO’s for the €xcept for period 10, where we have detected one additional

following Ikeda-Hammel-Jones-Moloney mé&p): orbit. The number of orbits of periods 14 through 22, which

were not reported previously, are given in Table I.

If we monitor the number of orbits detected with different

6) matricesC, we note that, for a wide range of values ®f

after we use identity matrixc;, only a few UPQ’s remain

undetected. For example, wi=5000 andC=C, in Eq.

FIG. 2. Number of detected orbits for different periods in the
Ikeda-Hammel-Jones-Moloney attractor given in Ej. Solid dots
indicate the values g8 above which we always detect a maximum
number of UPQO'’s for each period.

x'=a+b(xcos¢p—ysing),
y'=b(xsing+ycose),

where¢=k— 7/(1+x?+y?), and the parameters are chosen
such that the map has a chaotic attracto+1.0,b=0.9,k
=0.4, andny=6.0. Detection of UPQ’s proceeds as follows: 1801
UPO’s of periods 1 and 2 are quickly found using several
initial points on the attractor. Starting frop= 3 we use only
orbit points of periodp—1 as initial points. We choos€
from the set of five matrice$C,|k=1,...,5 provided in
Ref. [6], whereC;=1 is the identity matrix. The iteration
sequence computed from Ed) is terminated when it either
converges to an orbit point or leaves the chaotic attractor.
The average number of iterations increases linearly ith
which is understandable sindeéx||~1/g8 for large 8 and
away from an orbit point. However, a small fraction of initial 0k
points produces very long sequences which neither converge
to an UPO nor leave the attractor. In order to limit the
amount of unproductive computation, we set the maximum 0
number of iterations to 4—6 time®, which is sufficient for
the majority of iterates to be terminated properly. The qua-
dratic convergence of our scheme allows us to achieve, with- F|G. 3. Detection of UPO’s of period 13 in the Ikeda-Hammel-
out much computational effort, accuracy limited only by the jones-Moloney attractor. The number of orbits detected @itfis
computer roundoff error. Once the sequence converges to &mown with solid dots, while triangles represent the number of ad-
orbit point, we check whether it belongs to a yet undetecteditional orbits detected witle, , k=2, ..., 5. Thetotal number of
UPO, and if so, we compute the rest of the orbit points bydetected orbits is shown with open circles.

200

160

Number of detected POs
o
(=)
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(4), our method detects 14 699 orbits of period 21, and onlydimensional map: two coupled lkeda maps with coupling in
one new orbit is detected witE=C,. To understand this the form ¢ =k— 17/(1+x(212)+y(212))+27-rs(x(2,1)
feature of our method, which is common to all the maps—x; ), whose parameters are chosen such that the system
tested, in Fig. 3 we show, for the chaotic attractor in &),  has two positive Lyapunov exponents. We estimate the topo-
the number of period 13 orbits detected w@h (solid dotg  logical entropy in this system to ber~1.6, and thus the
and the number of additional orbits detected with, k number of orbits grows extremely fast with increasing orbit
=2,...,5(triangles. For 1006< <1000, almost all UPO’s length. We have detected complete sets of UPO'’s up to pe-
are detected, witlC being the identity matrix. At larger val- iod 7 with 8<1000. We have found that the reliability of
ues of 3 the number of thus detected orbits decreases, but i€ algorithm was not affected by the increased dimension-
remaining orbits are always detected with other matrices. Fo 1y Of the system. Even though the number of possible ma-

B>10° the numbers converge to those of the SD iterationtricesC in four dimensions is 384, only a dozen of these are
scheme, where about half of the orbits are detected @jth needed to detect all UPO's. The necessary set of matices

and the other half wittC. and C.. This behavior of our 2" be selected empirically when detecting short UPQO’s, and
2 3

scheme follows directly from the convergence cons'derat'onghen used in the detection of longer orbits.
ws di y Verg ' ! In conclusion, we have proposed an efficient algorithm

of Fig. 1, and results in a greatly improved efficiency com-¢,, the detection of UPO's in chaotic systems, and have suc-
pare_d to either the_: NR or SD. methods. cessfully detected large number of UPQO’s in several two-
Finally, we briefly describe the performance of our and higher-dimensional maps. Our method allows for a veri-

method for other maps. In case of thertde map our algo-  fication of the completeness of the detected orbits and high
rithm works extremely well, and, for the standard paramete%ccuracy limited only by the roundoff error.

values of @,b)=(1.4,0.3), detects all UPQO’s up to period 29

with 8<500, C=C; and C,, and using for initialization This work was supported by the AFOSR under Grant No.
only orbit points of periodo—1. We have also applied our F49620-98-1-0400 and by the NSF under Grant No. PHY-
algorithm to detecting UPO’s in the following four- 9722156.

[1] D. Auerbach, P. Cvitanovjc).-P. Eckmann, G.H. Gunaratne, (1995] which is applicable to two-dimensional maps if the
and |. Procaccia, Phys. Rev. Le®8, 2387 (1987; G.H. symbolic dynamics of the map is known and well ordered.
Gunaratne and |. Procaccitid. 59, 1377 (1987; D. Auer- [6] P. Schmelcher and F.K. Diakonos, Phys. Rev. L&#.4733
bach, B. O’Shaughnessy, and |. Procaccia, Phys. Re87,A (1997; Phys. Rev. B57, 2739(1998.

2234(1988; P. Cvitanovicand B. Eckhardt, Phys. Rev. Lett. [7]1 K. lkeda, Opt. Commun30, 257 (1979; S.M. Hammel,
63, 823(1989; D. Auerbach, Phys. Rev. Al, 6692(1990; P. C.K.R.T. Jones, and J. Moloney, J. Opt. Soc. Am2,B552
Cvitanovig Chaos2, 1 (1992. (1985. .

[2] C. Grebogi, E. Ott, and J.A. Yorke, Phys. Rev.3%, 1711 [8] W.H. Press,. S.A Te_ukol;ky, W.T. Vetterling, anql B.P. F_Ian-

(1988: Y.-C. Lai, Y. Nagai, and C. Grebogi, Phys. Rev. Lett. nery, Numerical Recipes in Fortrgr2nd ed.(Cambridge Uni-

versity Press, Cambridge, 1992
[9] It is practically impossible to use the SD method to detect
complete sets of UPQ'’s for periods above 20 because the
amount of computation required grows exponentially at a
much higher rate than that of our method.
[10] F.K. Diakonos, P. Schmelcher, and O. Biham, Phys. Rev. Lett.

79, 649(1997.

[3] M.C. Gutzwiller,Chaos in Classical and Quantum Mechanics
(Springer, New York, 1990

[4] D.P. Lathrop and E.J. Kostelich, Phys. Rev. 40, 4028
(1989; D. Pierson and F. Moss, Phys. Rev. Letp, 2124

(1995; D. Christini and J.J. Collinshid. 75, 2782(1995; X. 81, 4349(1998.
Pei, and F. Moss, Natur@ondon 379, 619(1996; B. Hunt 1] |ndeed, close to a zero point, the corrections from @yare
and E. Ott, Phys. Rev. Leff6, 2254(1996); P. So, E. Ott, S.J. proportional to the deviatiodinear convergenge while cor-
Schiff, D.T. Kaplan, T. Sauer, and C. Greboigiid. 76, 4705 rections determined from the NR method yield an error that is
(1996; P. So, E. Ott, T. Sauer, B.J. Gluckman, C. Grebogi,  proportional to the square of the deviatitquadratic conver-
and S.J. Schiff, Phys. Rev. 55, 5398(1997). gence.

[5] Particular methods exist for specific systems or in specia[12] Even though the Newton-Raphson method generally has a
cases, such as the method by Biham and WeelBiham fractal basin structure, we show only intervals adjacent to the
and W. Wenzel, Phys. Rev. Let63, 819 (1989] for the solution, as they are the most reliable source of starting points.

Henon map for which a Hamiltonian-like function can be [13] For relatively short orbits we verify the completeness of the
found with extrema located at the orbit points of UPQO'’s; and detected sets by initializing our iteration scheme on a fine grid
the method by HansefK. Hansen, Phys. Rev. B2, 2388 of initial points.



